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Abstract

In this paper the image denoising based on ridgedesforms gives better result in imagedenoishant
standard wavelet transforms. In this project weoihices an new approach for image denoising thhased on
ridgelets computed in a localized manner and thatomputationally less intensive than curvelets, $imilar
donising performance. The projection of image aeeain angle is computed at a certain angle,oblit on a
defined slice of the noisy image. After that ridgefransform of each slice is computed , to prodheeridgelet
coefficients for an image.The denoising operatianresponds to a simple thresholding of these hadge
coefficients.

The new method for image denoising technique isdhas two operations: one is the redundant direatio
wavelet transform based on the radon transformlaregholding of the ridgelet coefficient.

The image denoising algorithm with the ridgelensf@arm can be described by the following operations
First , add the noise to an image and than prajegtdon transform) is computed at a certain anflihe noise
image. After that, the ridgelet transform of thpsojection of the noise image is computed and thisencomponent
is reduced by simple thresholding of the ridgetedflicient. Then, the inverse ridgelet transfommtomputed to get
back the denoised version of that projection afeskit the same angle. Although the shape of thenstricted
object can be seen, the reconstructed image ishhddwred. To counteract this effect, a high péker is applied
to the sinogram data in the frequency domain. Thachieved by applying a 1-D DFT to the sinogrdaia for
each angle, multiply by the filter, and then usihg inverse DFT to reconstruct the data. The sistgtam of high
pass filter is a ramp. Applying the ramp filter ficantly improves the quality of the reconstruttenage.
However, because the ramp filter emphasises hegfuéncy components of the image, it can cause usdaise.
To counteract this, several other high-pass fillers commonly used. In this project we are usingapiide
Filtering. The wiener2 function applies a Wiendtefi (a type of linear filter) to an image adaplyeailoring itself
to the local image variance. Where the variandarige, wiener2 performs little smoothing. Where tagiance is
small, wiener2 performs more smoothing. This apghoaften produces better results than linear filter The
adaptive filter is more selective than a compardibkar filter, preserving edges and other highyfiency parts of
an image. In addition, there are no design tadies;vtiener2 function handles all preliminary compotas and
implements the filter for an input image. wiener2.

However, it does require more computation time tliagar filtering. Wiener2 works best when the rois
constant-power ("white") additive noise, such asi€a&@n noise.
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I ntroduction
Image denoising is one of the most popular combined with other operations such as image edge

research fields in image processing due to fadtitha detection and segmentation. Notewothy schemes for
extremely difficult to form a general global denpg image denoising based on transforms such as wayelet
scheme effective for all types of noise as welilhsypes curvelets, exploit redundancy and thresholdingetoave
images. A common problem in image denoising is the the noise without blurring the edges.

blurring of the prominent edges in the image whielm The important characteristic of the denoising

cause discrepancies when the denoising operation is technique introduced in this project is that it caduce
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considerably the noise without destroying the edgfes
the objects in the image. That is , the noise idl we
attenuated but the edge information is preservdwte T
new method for image denoising technique is based o
two operations: one is the redundant directionalelet
transform based on the ridgelet transform,
thresholding of the ridgelet coefficient.

The image denoising algorithm with the
ridgelet transform can be described by the follawin
operations. First, add the noise to an image and
thanprojection(ridgelet transform) is computed at a
certain angle, but only on a defined silce of tlmse
image. After that, the ridgelet transform of this
projection of the noise image is computed and thisen
component is reduced by simple thresholding of the
ridgeletcoefficient. Then, the inverse ridgelet sfanm is
computed to get back the denoised version of that
projection of the defined slice at the same angle.
Although the shape of the reconstructed object loan
seen, the reconstructed image is heavily blurred. T
counteract this effect, a high pass filter is aggblio the
sinogram data in the frequency domain. The wiener2
function applies a Wiener filter (a type of linddter) to
an image adaptively, tailoring itself to the lodalage
variance. Where the variance is large, wiener2opers$
little smoothing. Where the variance issmall, wigne
performs more smoothing. This approach often preduc
better results than linear filtering.

The adaptive filter is more selective than a
comparable linear filter, preserving edges andrdtigh-
frequency parts of an image. In addition, there mwe
design tasks; the wiener2 function handles all
preliminary computations and implements the filter
an input image. wiener2, however, does require more
computation time than linear filtering. wiener2 k®r
best when the noise is constant-power ("white")itadd
noise, such as Gaussian noise.

and

Experimental Design and Setups

Radon Transform: The Radon transform of an image is
the sum of the Radon transforms of each indivighire!.
The algorithm first divides pixels in the imagearfour
subpixels and projects each subpixel separately.

http: // www.ijesrt.com

ISSN: 2277-9655
Impact Factor: 1.852

Projections

Image

Figure 1.Subpixel Projection

Each subpixel's contribution is proportionally
split into the two nearest bins, according to tistashce
between the projected location and the bin cenletse
subpixel projection hits the center point of a b bin
on the axes gets the full value of the subpixelpoe-
fourth the value of the pixel. If the subpixel projion
hits the border between two bins, the subpixel eat
split evenly between the bins.

Radon Transformation Definition

The radon function computes projections of an
image matrix along specified directions. A projentiof
a two-dimensional function f(x,y) is a set of line
integrals. The radon function computes the linegrals
from multiple sources along parallel paths, or bg&ama
certain direction. The beams are spaced 1 pixel uni
apart. To represent an image, the radon functikasta
multiple, parallel-beam projections of the imagenfr
different angles by rotating the source arounddinater
of the image. The following figure shows a single
projection at a specified rotation angle.

Parallel-Beam Projection at Rotation Angle Theta

Sensors

g \ ‘. ™.,
- - - Rotation angle theto
4% N .
S
flxvl)

/ Source
N

Figure 2.Parallel beam Proj ection.
For example, the line integral d&€xy) in the
vertical direction is the projection dfx,y) onto thex-
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axis; the line integral in the horizontaldirectias the

projection off(x,y) onto they-axis. The following figure

shows horizontal and vertical projections for a fgin

two-dimensional function.
"

flay)

Projection onto the y-oxis

Projection onfo the x-uxis

Figure 3. Horizontal and vertical Projection.
Projections can be computed along any anfle In
general, the Radon transformf@t,y) is the line integral
of f parallel to the/ -axis

Ro(x") = r fix'cosB —y'sin®, x'sin® + v'cos0) dy’

Where

,

x| _ | cosB sinB||x

,

W —=inf cosB| |y

The following figure illustrates the geometry ofeth
Radon transform.

Rg(l”)

Figure 4.Randon transform projection

Geometry of the Radon Transform

This command computes the Radon transform
of | for the angles specified in the vector theta.

. [R,xp] = radon(l,theta);

The columns of R contain the Radon transform fahea
angle in theta. The vector xp contains the cormedjng
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coordinates along thg-axis. The center pixel of | is
defined to be floor((size(l)+1)/2); this is the pbon the

X -axiscorresponding = U_

The Radon transform of an image represented
by the function f(x,y) can be defined as a seriefine
integrals through f(x,y) at different offsets frothe
origin. It can be defined mathematically as

R(p.7)= f f(x, px+ 1) dx

where p and tau are the slope and intercepts ofirtae

A more directly applicable form of ttransform
can be defined by wusing a delta function:

R(r,0)= r r f(x,v)o(xcos0 + vy —r) dvy dv

where theta is the angle of the line, and r is the
perpendicular offset of the line.

Figure 5. Radon transform proj ection angle theta,tau

Radon Transform

The acquisition of data in medical imaging
techniques such as MRI, CT and PET scanners insolve
a similar method of projecting a beam through ajectb
and the data is in a similar form to that describethe
second equation above. The plot of the Radon twamsf
or scanner data, is referred to asiaogram due to its
characteristic sinusoid shape. TFigure shows a simple
non-homogeneous shape and the sinogram created by
taking the Radon transform at intervals of one degr
from O to 180 degrees.The sinogram produced by
applying the Radon Transform
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Figure 6.Radon transfor m scanner data (Sinogram)

Invers Radon filtered back
Projection

To reconstruct the image from the sinogram, the
inverse Radon transform is applied to the imageer&h
are several techniques by which the inverse tramsfo
can be calculated but the most common is FilterackB
Projection. The filtered back projection algorithersplit

into two phases, filtration and projection.

TransformUsing

Projection

The projection phase is very similar to the
Radon transform described above, and shoviaigime
except now the line integrals are projected badhk tme
plane at their respective angles. The projectioasptof
the Filtered Back Projection, using the data format
described above:

Jflx,v)= J-Dﬁ f(xcosO + vsm 0),0)

where f' is the filtered data.

A common discrete approximation of this is:
-1

F (35 3) = A0 f(x,, cost, + v,sin6,.6,)
t=0

This equation can be used to determine the pixel
values at a given point. The exact values depenthen
chosen interpolation method, e.g. nearest-neighbour
linear interpolation etc. As more projections adeled,
the quality of the reconstruction will increase.isTlis
clearly not enough to accurately reconstruct thage
but the individual projections can be seen. thaltesf
the back projection algorithm applied as describad
using all available data. Although the shape of the
reconstructed object can be seen, the reconstrimtege
is heavily blurred. To counteract this effect, gthpass
filter is applied to the sinogram data in the freqgcy
domain.

This is achieved by applying a 1-D DFT to the
sinogram data for each angle, multiply by the ffjlnd
then using the inverse DFT to reconstruct the dBl.
simplest form of high pass filter is a ramp. Applyithe
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ramp filter significantly improves the quality ohe
reconstructed image. However, because the rangy filt
emphasises high frequency components of the image,
can cause unwanted noise. To counteract this, aever
other high-pass filters are commonly used. See the
reference for a full discussion, including derieat, on

the use of filtration.

Adaptivefilter

The wiener2 function applies a Wiener filter (a
type of linear filter) to an image adaptively, taihg
itself to the local image variance. Where the var@is
large, wiener2 performs little smoothing. Where the
variance is small, wiener2 performs more
smoothing.This approach often produces better tesul
than linear filtering. The adaptive filter is maselective
than a comparable linear filter, preserving edged a
other high-frequency parts of an image.

In addition, there are no design tasks; the
wiener2 function handles all preliminary computato
and implements the filter for an input image. wiye
however, does require more computation time thaeali
filtering. wiener2 works best when the noise isstant-
power ("white") additive noise, such as Gaussiaseo

Discrete Wavelet Transform

Introduction: The Discrete Wavelet Transform
(DWT) involves choosing scales and positions based

powers of two. So called dyadic scales and postion
The mother wavelet is rescaled or dilated by povedrs

two and translated by integers. Specifically, acfion

f(t) = L2(R) (defines space of square integrable
functions) can be represented as

_Hrr:i Zrh_r.k;qnl ‘t=k)+ :mf..r’( W25t =k)

_—1 - |

The functiony(t) is known as the mother
wavelet, whilep(t) is known as the scaling Function. The
set of functions

2o Tt =k N2 w2 =k )| j< Lk Le Z),

Where Z is the set of integers is an orthonormaisoir
L2(R).

The numbers a(L, k) are known as the
approximation coefficients at scale L, while d(jace
known as the detail coefficients at scale j.
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The approximation and detail coefficients can
be expressed as:

-

l o r
af Lk )=— = ‘_I_l_ﬂfﬂlﬁ."'f—ﬁ',’cf.’

V&

[a—

d( J,k)=— _[ Fre (27t =k jdt
\I.-l,_l ——

To provide some understanding of the above
coefficients consider a projection fl(t) of the &ion f(t)
that provides the best approximation (in the seofse
minimum error energy) to f(t) at a scale I. Thisjpction
can be constructed from the coefficients a(L, lging
the equation

fi(t)= forf,ﬁr,lq)rz‘lr—k;,

As the scale | decreases, the approximation
becomes finer, converging to f(t) as»| 0.L] The
difference between the approximation at scale lahd
that at [, fl+1(t) - fl(t), is completely describéy the
coefficients d(j, k) using the equation

fra(t)=fi(t)=>d(Lk (2"t =k).

k=

Using these relations, given a(L, k) and {d(j| k)
j £ L}, it is clear that we can build the approximatiat
any scale. Hence, the wavelet transform breaksigreal
up into a coarse approximation fL(t) (given a(L) &hd a
number of layers of detail {fj+1(t)-fi(t)| j < L}diven by
{d(j, k) | j < L}). As each layer of detail is added, the
approximation at the next finer scale is achieved.

Vanishing M oments

The number of vanishing moments of a wavelet
indicates the smoothness of the wavelet functiowels
as the flatness of the frequency response of theslet
filters (filters used to compute the DWT).Typically
wavelet with p vanishing moments satisfies theofelhg
equation .

Imf”'w{r,ldr:[] form=0...... p-1.

or equivalently,
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Z{—lﬁk”'r(ﬁ‘) =0 form=0,.....p-1.

For the representation of smooth signals, a
higher number of vanishing moments leads to a rfaste
decay rate of wavelet coefficients. Thus, waveléth a
high number of vanishing moments lead to a more
compact signal representation and are hence useful
coding applications.

However, in general, the length of the filters
increases with the number of vanishing momentstaed
complexity of computing the DWT coefficients incses
with the size of the wavelet filters.

The Fast Wavelet Transform Algorithm:

The Discrete Wavelet Transform (DWT)
coefficients can be computed by usingMallat.s Fast
Wavelet Transform algorithm. This algorithm is
sometimes referred to asthe two-channel sub-baddrco
and involves filtering the input signal based on
thewavelet function used.

Implementation Using Filters

To explain the implementation of the Fast
Wavelet Transform algorithm consider the following
equations:

o) = Eﬂ Y2t —k)
k

Wt —Zx—lf:‘:l—ﬁrmr:r—k;

. — 7R
E-:*(‘J___\ = 0

2m [T
k

The first equation is known as the twin-scale
relation (or the dilation equation) and defines sbaling
function. The next equation expresses the wavelit
terms of the scaling functiop. The third equation is the
condition required for the wavelet to beOrthogadwatihe
scaling function and its translates.

The coefficients c(k) or {cO, .., c2N-1} in the
above equations represent the impulse response
coefficients for a low pass filter of length 2N, tlwvia sum
of 1 and a norm of1/2.

The high pass filter is obtained from the low
pass filter using the relationshipg ( )k c( k) k% 1-,
where k varies over the range (1. (2N . 1)) to 1.

The first Equation shows that the scaling
function is essentially a low pass filter and iedigo
define the approximations. The wavelet functionirdsd
by equation (second) is a highpass filter and ésfithe
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details.Starting with a discrete input signal vecpthe
first stage of the FWT algorithm decomposes thaalig
into two sets of coefficients. These are the apipnakon
coefficients cAl (low frequency information) andeth
detail coefficients cD1 (high frequency informatipas
shown in the figure below.

low-pass filter downsample approximation
pass f il coefficients

ey

high-pass filter downsample detail

coefficients

‘ 2 Keep the even indexed elements

where: Convolve with filter X.

Figure 7.FWT decomposing of coefficients

The coefficient vectors are obtained by
convolving s with the low-pass filter Lo D for
approximation and with the high-pass filter Hi_Dr fo
details. This filtering operation is then followedy
dyadic decimation or down sampling by a factor of
2.Mathematically the two-channel filtering of the
discrete signal s is represented by theexpressions:

4 = Zfi'gzr_k ) cD, = Z?H":;_k
k k

These equations implement a convolution plus
down sampling by a factor 2 and give the forwarsk fa
wavelet transform.

If the length of each filter is equal2N and the
length of the original signal s is equal to n, thbe
corresponding lengths of the coefficients cAl afd ¢
are given by the formula:

n-1
. )+ N

This shows that the total length of thavelet
coefficients is always slightly greater than thegtih of
the original signal due to the filtering procesedis

floor (

Multilevel Decomposition:

The decomposition process can be iterated,
with successive approximations being decomposed in
turn, so that one signal is broken down into mdowyer
resolutionComponents. This is called the wavelet
decomposition tree.
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[
l—cA1~l cD;
rCAZ‘l cD,

cAq cD,

Figure 8. Multilevel Decomposition
The wavelet decomposition of the signal s analysed
level j has the following structure[cAj, cDj, ...,
cD1].Looking at a signals wavelet decompositioretre
can reveal valuable information. The diagram below
hows the waveletdecomposition to level 3 of a sampl
signal S.

v S v
v Ay '] D
- o
Al ¢,
Figure 9.Multilevel Decomposition level 3 of a sample signal

S

Since the analysis process is iterative, in theory
it can be continued indefinitely. In reality, the
decomposition can only proceed until the vectorstsig
of a single sample. Normally, however there idelitir
no advantage gained in decomposing a signal begond
certain level. The selection of the optimal decosiian
level in the hierarchy depends on the nature oktgmeal
being analysed or some other suitable criterioohsas
the low-pass filter cut-off.

Signal Reconstruction:

The original signal can be reconstructed or
synthesised using the inverse discrete wavelesfivam
(IDWT). The synthesis starts with the approximatiom
detail coefficients cAj and cDj, and then reconsisu
cA-l by up sampling and filtering with the
reconstruction filters.
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upsample low-pass

o —{te
- cAj
<D; Hi_R level j-1

level j upsample high-pass

where: Insert zeros at odd-indexed elements.

Convolve with filter X.

Figure 10. Signal synthesizer (Signal Reconstruction)

The reconstruction filters are designed in such a
way to cancel out the effects of aliasing introdlizethe
wavelet decomposition phase. The reconstructidersil
(Lo_R and Hi_R) together with the low and high pass
decomposition filters, forms a system known as
guadrature mirror filters (QMF).

For a multilevel analysis, the reconstruction
process can itself be iterated producing successive
approximations at finer resolutions and finally
synthesising the original signal.

Results & Discussion

The wiener2 function applies a Wiener filter (a
type of linear filter) to an image adaptively, taihg
itself to the local image variance. Where the var&@is
large, wiener2 performs little smoothing. Where the
variance is small, wiener2 performs more
smoothing.This approach often produces better tesul
than linear filtering. The adaptive filter is maselective
than a comparable linear filter, preserving edged a
other high-frequency parts of an image. In addjtibere
are no design tasks; the wiener2 function handles a
preliminary computations and implements the filter
an input image. wiener2, however, does require more
computation time than linear filtering. wiener2 Wwer
best when the noise is constant-power ("white")itadgd
noise, such as Gaussian noise.
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Conclusion

In this Thesis, we presented a strategy for
digitally implementing the sliced ridgelet transfus.
The resulting implementations have the exact
reconstruction property, give stable reconstructioder
perturbations of the coefficients, and as deployed
practice, partial reconstructions seem not to sufiem
visual artifacts.

There are, of course, many competing strategies
to translate the theoretical results on ridgeiets digital
representations. Guided by a series of experimaves,
arrived at several innovative choices which we have
highlighted in this thesis.
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